Preface

The 17th International Symposium on Molten Salts and Ionic Liquids will be held October 10 – October 15, 2010 in Las Vegas, NV as part of the 218th Meeting of the Electrochemical Society. As with previous years, its success will be due to strong international participation, with researchers and scientists from 17 countries presenting their contributions to the field.

The Molten Salts and Ionic Liquids Symposium would not exist without the financial support it receives from both internal and external sources. The Physical and Analytical Electrochemistry, Energy Technology, and Electrodeposition Divisions of the Electrochemical Society provided much of the funding to host this symposium. In addition, the U.S. Air Force Office of Scientific Research and the U.S. Army Research office provided much needed funds to support the travel and registration for international and young investigators presenting at the meeting. The co-organizers for this symposium were Paul C. Trulove, United States Naval Academy, Hugh C. De Long, Air Force Office of Scientific Research, Robert A. Mantz, Army Research Office, Minoru Mizuhata, Kobe University, Wesley A. Henderson, North Carolina State University, and Douglas M. Fox, American University.

The topics covered at this symposium continue to be a well distributed mix between fundamental property exploration and unique applications of molten salts and ionic liquids. Over 60 oral and 20 poster presentations will be given during the symposium on topics ranging from gas adsorption and phase behavior, solvent behavior of organic and biopolymer solutions, new ionic liquids and novel materials from ionic liquids, electrodeposition of metals, power and energy applications, and electrode processes. The 2010 recipient of the Max Bredig Award is C. Austen Angell of the Arizona State University, USA. In his award address, he will discuss the ionic liquid structure and its applications as an electrochemical solvent.

Douglas M. Fox
American University
July 24, 2010
C. Austen Angell is the 2010 recipient of the Max Bredig Award in Molten Salt Chemistry. Prof. Angell holds B.Sc. and M.Sc. degrees from the University of Melbourne, and a Ph.D. degree from London University, Imperial College of Science where he was a Stanley Elmore Fellow and also the winner of the Armstrong Medal for research excellence. He has held positions at the University of Melbourne, Argonne National Laboratory, and Purdue University before moving to Arizona State University in 1989, where he presently holds the position of Regents' Professor of Chemistry. Prof. Austen has made many significant contributions over his distinguished career as evidenced by his almost 500 publications and his awards, including: MRS Turnbull Lecture (2006), ACS Joel Henry Hildebrand award for the study of liquids (2004), the Neville Mott award of the Journal of Non-Crystalline Solids (1992), and the Morey award of the American Ceramic Society (1990). More importantly, Prof. Angell has been one of the pivotal researchers in the molten salt and ionic liquid community for the past 50 years, and he has led the way in the development of the fundamental science of these fascinating and important systems dating back to his very first publication in 1958. Professor Angell has consistently been the genesis for both the development of new classes of ionic liquids and innovative new ideas about how to understand them, and he has been instrumental in drawing upon concepts from other scientific communities and applying them to molten salts and ionic liquids to help explain their unique properties.
Table of Contents

Preface

Chapter 1
Max Bredig Award Dinner

(Max Bredig Award Presentation) From Slags to Molten Salts to Ionic Liquids:
A 50 Year Joyride
C. Angell

Chapter 2
Novel Ionic Liquid Systems

(Invited) New Functionalized Imidazolium-Based Room-Temperature Ionic Liquids and
Composite Materials for Gas Separation and Selective Transport Applications
*D. Gin, R. Noble, T. Carlisle, B. Voss, J. Bara, A. LaFrate, A. Miller, Y. Hudiono,
B. Wiesenauer, and M. Reynolds*

New Ionic Liquids Containing Fluorosulfonyl(trifluoromethylsulfonyl)amide and 5-Phosphoniaspiro[4.4]nonan
H. Matsumoto, T. Umecky, and S. Tsuzuki

Ionic Liquid/Zeolite Composites: Synthesis and Characterization Using Vibrational
Spectroscopy Techniques
S. Ntais, A. Moschovi, V. Dracopoulos, and V. Nikolakis

Synthesis and Characterization of Choline Chloride Based Binary Mixtures
Q. Abbas and L. Binder

Chapter 3
Novel Applications of Ionic Liquids

(Invited) Controlled Chemistry of Moisture Sensitive Reagents in Ionic Liquids
E. Amigues, C. Hardacre, G. Keane, M. Migaud, S. Norman, and W. Pitner

Highly Efficient Extraction of Phenols from Aqueous Solution Using Magnetic Room Temperature Ionic Liquids
N. Deng, M. Li, S. L. de Rooy, B. El-Zahab, and I. Warner

Process Variables that Control Natural Fiber Welding

Characterization of Polymer Movement in Fiber Welded Cellulose Composites

Microencapsulated POSS in Cellulose Using 1-Ethyl-3-Methylimidazolium Acetate
D. M. Fox, J. Lee, J. Jones, M. Zammarano, and J. Gilman

Grass to Gas: Ionic Liquid Based Conversion of Biomass to Fuels

Selective Gas Absorption by Ionic Liquids
S. Shunmugavel, S. Kegnaes, J. Due-Hansen, T. Gretasdottir, A. Riisager, and R. Fehrmann

Carbon Composite with Pt Nanoparticles Prepared by Room-Temperature Ionic Liquid-Sputtering Method
K. Yoshii, T. Tsuda, T. Torimoto, and S. Kuwabata

Fluorescence Activity of Green Fluorescent Protein in Ionic Liquids
L. M. Haverhals, C. L. DaBronzo, J. L. Schlessman, W. M. Reichert, H. C. De Long, and P. C. Trulove

Chapter 4
High Temperature Molten Salts

(Invited) Physical Properties of High Temperature Molten Salts
Y. Sato

Investigation of Fluoroacidity in Molten Fluorides by the Combination of High Temperature NMR and Molecular Dynamics
Electrochemical Behavior of Dissolved Titanium Species in Molten Salts
G. Haarberg, O. Kjos, A. Martinez, K. S. Osen, E. Skybakmoen, and K. Dring

Current Efficiency for Aluminum Electrowinning from Cryolite-Alumina Melts in a Laboratory Cell
G. Haarberg, J. Armoo, H. Gudbrandsen, E. Skybakmoen, A. Solheim, and T. Jentoftsen

Electrochemical Corrosion Behavior of Refractory Metals in LiCl-Li$_2$O Molten Salt
M. Misra, K. S. Raja, and J. Ruppert

Microstructures of Electro-Carburized Mild Steels
N. J. Siambun, G. Zheng Chen, and D. Hu

Electrochemical Formation of Nd-Ni Alloys in Molten LiF-CaF$_2$-NdF$_3$
T. Nohira, S. Kobayashi, K. Kobayashi, R. Hagiwara, T. Oishi, and H. Konishi

Electrical Conductivity of Molten Fluoride-Chloride Electrolytes
A. Dedyukhin, A. Redkin, A. Apisarov, and Y. Zaikov

Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity
H. Kim, J. D. Paramore, A. Allanore, and D. Sadoway

Production of Tantalum Fine Powder by Reducing Tantalum Chloride with Zinc in Molten Salt
K. Onodera, Y. Hoshino, O. Takeda, and Y. Sato

Direct Electrolytic Reduction of Powdery SiO$_2$ in Molten CaCl$_2$ with Pellet-Type SiO$_2$ Contacting Electrodes
K. Kobayashi, T. Nohira, R. Hagiwara, K. Ichitsubo, and K. Yamada

Electrochemical Behavior of Titanium, Silicon and Boron Oxides in Cryolite-Alumina Melts
S. V. Devyatkin, A. Pisanenko, and A. Sarychev

Electrochemistry of the Nb(V)/Nb(IV) Redox Couple in the KCl-K$_2$NbF$_7$ Melt
A. Popova and S. Kuznetsov

Cyclic Voltammetry of Solid TiO$_2$ in Molten Alkali Chlorides
K. Jiang, X. Hu, X. Jin, D. Wang, and G. Chen

Spectroelectrochemical Study of Stainless Steel Corrosion in NaCl-KCl Melt
Electronic Absorption Spectra of Vanadium Species in Halide Melts

Processing of Vanadium and Niobium Electrodeposited from Alkali Chloride Melts
M. V. Chernyshov, I. B. Polovov, O. I. Rebrin, V. A. Volkovich, R. Kamalov, and T. Griffiths

CuO Solubility in Alkali-Chloride Melts
I. N. Skryptun

Investigation of the Interaction of Components in the System NaF-LiF-LaF₃
R. Savchuk and N. Faidyuk

Corrosion of Stainless Steel in NaCl-KCl Based Melts

The Standard Rate Constants of Charge Transfer for the CR(III)/Cr(II) Couple in NaCl-KCl-CrCl₃ and NaCl-KCl-K₃CrF₆ Molten Salts
Y. Stulov and S. Kuznetsov

Chapter 5
Nuclear and Rare Earth Chemistry

(Invited) Pyrochemical Reprocessing of Used Nuclear Fuels
T. Koyama, Y. Sakamura, and M. Iizuka

Effect of Addition of Multi-Component Lanthanides to LiCl-KCl Eutectic on Thermal and Electrochemical Properties
M. Misra, K. S. Raja, A. V. Jaques, and S. Baral

In Situ Experimental Approach of the Speciation in Molten Lanthanide and Actinide Fluorides Combining NMR, EXAFS and Molecular Dynamics

The Effect of Fission Product Elements on the Behavior of Uranyl Species in Alkali Chloride Melts: a Contribution towards Reprocessing Spent Oxide Fuels
V. A. Volkovich, D. Aleksandrov, B. Vasin, D. Maltsev, and T. Griffiths
Electrochemical and Spectroscopic Properties of Technetium in Fused Alkali Metal Chlorides

V. A. Volkovich, B. Vasin, and T. Griffiths

Behavior of Molybdenum Chloro-Species in Alkali Chloride-Based Melts: Implications for Spent Nuclear Fuel Treatments

V. A. Volkovich, I. B. Polovov, R. Kamalov, and T. Griffiths

Reaction of Curium(III) Ions with Oxo-Species in Alkali Chloride Melts

A. Osipenko, A. Maershin, V. A. Volkovich, M. Kormilitsyn, and A. Bychkov

Chapter 6
Power and Energy Applications

(Invited) Notes on the Application of the Kornyshev Model for Capacitance in Ionic Liquids

M. Kobrak

Electrochemical Capacitors Using Fluorohydrogenate Ionic Liquid Electrolytes

K. Matsumoto, K. Takahashi, A. Senda, T. Nohira, and R. Hagiwara

Electrodeposition of Crystalline Silicon Films from Alkali Fluoride Mixtures

Electrical Conductivity of the Coexisting System Containing Molten Carbonates and Rare-Earth Oxide

M. Mizuhata, T. Ohashi, and A. B. Béléké

Oxygen Reduction Reaction on LaNiO3 in Li/Na Eutectic Carbonate Melt with La2O3

K. Matsuzawa, K. Watanabe, S. Mitsushima, and K. Ota

Electrowinning of Lithium from Molten Salt Containing LiOH for Hydrogen Storage and Transportation

O. Takeda, M. Li, M. Hoshi, and Y. Sato

Synthesis of New Protic Ionic Liquids for Fuel Cells on the Basis of In Situ FT-IR Measurements

H. Munakata, T. Tashita, M. Haibara, and K. Kanamura
Chapter 7
Electrochemistry and Electrodeposition

(Invited) Amperometric Gas Detection Using Room Temperature Ionic Liquid Solvents
E. Rogers, A. O’Mahony, L. Aldous, and R. G. Compton 473

Photoassisted Anodic Oxidation of Bromide on an n-Type Titanium Dioxide Electrode in an Amide-Type Ionic Liquid
Y. Katayama, S. Koshizawa, and T. Miura 503

Voltammetric Investigations of Ketone Complexation by Lewis Acids in Ionic Liquids
G. T. Cheek 509

Potentiostatic Cu-Zn Alloying for Polymer Metallization Using Medium-Low Temperature Ionic Liquid Baths
K. Murase, K. Yanase, T. Ichii, and H. Sugimura 515

The Group I Alkali Metals in Ionic Liquids: Electrodeposition and Determination of Their Kinetic and Thermodynamic Properties
R. Wibowo, L. Aldous, S. Ward Jones, and R. G. Compton 523

Electrochemical Preparation of Nickel and Iron Nanoparticles in a Hydrophobic Ionic Liquid
Y. Zhu, Y. Katayama, and T. Miura 537

Irradiation-Induced Metal Nanoparticles in Room-Temperature Ionic Liquid

The Influence of Potential Under Diffusion-Controlled Region on Electrodeposition of Silver in an Amide-Type Ionic Liquid
R. Fukui, Y. Katayama, and T. Miura 555

Surface Finishing of Mg Alloys by Al Electroplating in AlCl3-EMIC Ionic Liquid
M. Ueda, Y. Tabei, and T. Ohtsuka 563

Surface Characterization of High Purity Niobium Electropolished with an Ionic Liquid
T. M. Abdel-Fattah and R. Crooks 571

Electrodeposition of Selenium from the 1-Ethyl-3-Methylimidazolium Chloride-Tetrafluoroborate Room-Temperature Ionic Liquid
L. Chou, I. Sun, and C. L. Hussey 575
Chapter 8
Structure and Properties

(Invited) Bulk and Interfacial Behavior of Ionic Liquids from Molecular Dynamics Simulations
 O. Borodin, J. Vatamanu, and G. Smith

Semi-Empirical Molecular Modeling Methods of Ionic Liquid Tribology: Ionic Liquid-Hydroxylated Silicon Surface Interactions
 N. Nooruddin, P. Wahlbeck, and W. R. Carper

A Neutron Diffraction and Molecular Dynamics Investigation of Acetate-Based Ionic Liquids as Solvents for Glucose

Vibrational Spectra and Dynamics of Anions and Acids in Ionic Liquids
 J. Owrutsky, C. Houchins, D. Weidinger, and D. Brown

Analysis of Cationic Structure in Some Room Temperature Molten Fluorides and Dependence of Their Ionic Conductivity and Viscosity on HF-Concentration
 A. Tasaka, T. Nakai, H. Inoue, K. Nakanishi, T. Isogai, S. Kohara, M. Saito, and M. Inaba

Mechanical and Dynamic Properties of N,N,N,N-Tetramethylammonium Dicyanamide Plastic Crystal
 J. B. Hooper and O. Borodin

Exploring the Effect of Structural Modification on the Physical Properties of Various Ionic Liquids
 S. I. Lall-Ramnarine, J. Hatcher, A. Castano, M. Thomas, and J. Wishart

Effects of Crystal Packing on the Thermal Behavior of N,N'-alkylpiperidinium and N,N'-alkylmorpholinium Iodide Salts
 W. M. Reichert, W. Henderson, P. C. Trulove, J. J. Urban, and H. C. De Long

Transport Properties in Cryolitic Melts: NMR Measurements and Molecular Dynamics Calculations of Self-Diffusion Coefficients
Interactions of Perfluoroalkyltrifluoroborate Anions with Cations: Effects of Perfluoroalkyl Chain Length on Motion of Ions in Ionic Liquids

S. Tsuzuki, T. Umecky, and H. Matsumoto

Author Index
Facts about ECS

The Electrochemical Society (ECS) is an international, nonprofit, scientific, educational organization founded for the advancement of the theory and practice of electrochemistry, electrothermics, electronics, and allied subjects. The Society was founded in Philadelphia in 1902 and incorporated in 1930. There are currently over 7,000 scientists and engineers from more than 70 countries who hold individual membership; the Society is also supported by more than 100 corporations through Corporate Memberships.

The technical activities of the Society are carried on by Divisions. Sections of the Society have been organized in a number of cities and regions. Major international meetings of the Society are held in the spring and fall of each year. At these meetings, the Divisions and Groups hold general sessions and sponsor symposia on specialized subjects.

The Society has an active publications program that includes the following.

Journal of The Electrochemical Society — JES is the peer-reviewed leader in the field of electrochemical and solid-state science and technology. Articles are posted online as soon as they become available for publication. This archival journal is also available in a paper edition, published monthly following electronic publication.

Electrochemical and Solid-State Letters — ESL is the first and only rapid-publication electronic journal covering the same technical areas as JES. Articles are posted online as soon as they become available for publication. This peer-reviewed, archival journal is also available in a paper edition, published monthly following electronic publication. It is a joint publication of ECS and the IEEE Electron Devices Society.

Interface — *Interface* is ECS’s quarterly news magazine. It provides a forum for the lively exchange of ideas and news among members of ECS and the international scientific community at large. Published online (with free access to all) and in paper, issues highlight special features on the state of electrochemical and solid-state science and technology. The paper edition is automatically sent to all ECS members.

Meeting Abstracts (formerly Extended Abstracts) — Abstracts of the technical papers presented at the spring and fall meetings of the Society are published on CD-ROM.

ECS Transactions — This online database provides access to full-text articles presented at ECS and ECS-sponsored meetings. Content is available through individual articles, or as collections of articles representing entire symposia.

Monograph Volumes — The Society sponsors the publication of hardbound monograph volumes, which provide authoritative accounts of specific topics in electrochemistry, solid-state science, and related disciplines.

For more information on these and other Society activities, visit the ECS website:

www.electrochem.org