Dielectrics in Nanosystems -and- Graphene, Ge/III-V, Nanowires and Emerging Materials for Post-CMOS Applications 3

Editors:

Z. Karim
AIXTRON, Inc.
Sunnyvale, California, USA

P. Srinivasan
Texas Instruments, Inc.
Dallas, Texas, USA

S. De Gendt
imec
Leuven, Belgium

D. Misra
New Jersey Institute of Technology
Newark, New Jersey, USA

Y. Obeng
National Institute of Standards and Technology
Gaithersburg, Maryland, USA

Sponsoring Division:

Dielectric Science & Technology

Published by
The Electrochemical Society
65 South Main Street, Building D
Pennington, NJ 08534-2839, USA
tel 609 737 1902
fax 609 737 2743
www.electrochem.org
PREFACE

This issue of *ECS Transactions* combines the manuscripts from the “Graphene, Ge/III-V, Nanowires and Emerging Materials for Post-CMOS Applications – 3” symposium and the papers presented at the “Tutorials in Nanotechnology” symposium, with focus on ‘Dielectrics in Nanosystems.’ We hope that this combination will bring more value to our readers as a reference volume. The editors appreciate the support of all Divisions involved in its creation and the New Technology Subcommittee for enabling the tutorial chapters.

In recent years there have been four International Symposia on “Dielectrics In Nanosystems: Materials Science, Processing, Reliability and Manufacturing,” which were held during alternate ECS Spring Meetings. The latest of these meetings was Spring 2010 in Vancouver, Canada, and was co-sponsored by the DS&T Division of ECS and IEEE EDS. The topics for the tutorial materials included in this issue were selected based on the four previous symposia and the current direction of research that novel dielectrics play in nanosystems.

After two successful symposia in Vancouver (2010) and San Francisco (2009), the “Third International Symposium on Graphene, Ge/III-V, Nanowires and Emerging Materials for Post-CMOS Applications,” held in Montreal from May 2-4, 2011, which brought together an excellent set of papers from different parts of the globe emphasizing “More-Than-Moore” systems and continue to bridge the gap between advanced CMOS and “Post-CMOS systems”. In the quest of achieving high speed and high mobility low power devices, Ge for PMOS and III-V for NMOS are more near-term exploratory materials, whereas, Nanowires and Graphene are next generation materials following Ge/III-V technology nodes. In addition, due to its better thermal and transport properties, Graphene is uniquely positioned to support “Post-CMOS” era applications.

In the first chapter of this issue, there are five tutorials presented by world leaders on “Dielectric in Nanosystems”. The perspective of nanotechnology and its convergence with future information technology is discussed in the first one. The second one provides a status review of nanocrystals embedded high-k nonvolatile memories. The third one brings the silicon nanowire field effect transistor technology. The fourth one addresses the physics of nanonet fabrics and its applications in electronic, optical, biosensing, energy storage, and MEMS devices and systems. The fifth one brings the next generation sensor systems for healthcare and homeland Security.

In the second part of this issue, “Graphene, Ge/III-V, Nanowires and Emerging Materials for Post CMOS Applications – 3,” the papers represent many of the leading research groups in the field. The symposium started with four plenary papers given by leading groups on Ge-source TFETs, Graphene Nanoelectronics, III-V Channels, and Nanowire Electronics respectively. The first speaker, Prof. Tsu-Jae King Liu of University of California, Berkeley also won “2011 Thomas D. Callinan Award” sponsored by Dielectric and Science Division. Rearranging some of these papers, the
second chapter of this issue contains the papers presented on “Nanowires and Exploratory Materials for Post CMOS Devices.”

In the Graphene related section, a total of 15 papers were presented covering the following areas: 1) Graphene Material Preparation, Synthesis and Characterization; 2) Graphene Field Effect Transistors and Electronics, and 3) CNT Field Effect Transistors and Electronics. These papers are represented in the following two chapters (Chapter 3 and 4).

In the Ge/III-V related section, a total of 23 papers were presented covering the following areas, published in subsequent five chapters: 1) III-V High Mobility Channel FETs : Fabrication and Characterization, 2) III-V High Mobility Channel FETs : Device Optimization, 3) Gate Dielectric and III-V MOSFET : Interface and Performance, 4) Ge and SiGe High Mobility FETs : Fabrication and Characterization, and 5) Ge Based Devices : Device Optimization for Gate Dielectrics and Contacts. Here, we have drawn extensively on the university and industry groups affiliated with SRC-NRI programs in Beyond CMOS. For this, we wish to acknowledge the SRC-NRI program’s tacit support for these symposia.

We would like to express our sincere appreciation to the tutorial presenters and all the authors who contributed to this issue of ECS Transactions. Their dedicated effort in preparing and submitting the manuscripts is highly appreciated. They have allowed us to hopefully produce a more valuable volume to our readers within short time.

We are also grateful to the staff of The Electrochemical Society, particularly Paul Urso, John Lewis, and Beth Anne Stuebe, who helped us at various stages, preceding, during, and after the symposium, and during the publication period. Finally, the success of the symposium would not have been possible without the financial support given by Dielectric Science and Technology Division, and the New Technology Subcommittee as well as the continuous sponsorship provided by AIXTRON for the last three years.

We hope that this combined issue will bring more value to our readers who are interested and focused on Dielectric Nanosystems and low power high speed nano-electronics based on Graphene, Nanowires and Ge/III-V materials.

Zia Karim
Durga Misra
Purushothaman Srinivasan
Yaw Obeng
Stefan De Gendt

May 2011
Table of Contents

Preface iii

Dielectrics in Nanosystems

Chapter 1
Tutorials in Nanotechnology: Dielectrics in Nanosystems

The Perspective of Nanotechnology and Its Convergence with Future Information Technology
J. Kim 5

Status Review of Nanocrystals Embedded High-K Nonvolatile Memories
Y. Kuo 13

Si Nanowire FET Technology

The Physics of Nanonet Fabrics and Its Applications in Electronic, Opto-electronic, Biosensing, Energy Storage, and MEMS Devices and Systems
M. Alam 55

Organic Sensor Platforms for Environmental and Security Applications
V. Seena, R. S. Dudhe, H. N. Raval, S. Patil, A. Kumar, S. Mukherji, and V. Rao 67
Graphene, Ge/III-V, Nanowires and Emerging Materials for Post-CMOS Applications

Chapter 2: Nanowires and Other Exploratory Materials for Post CMOS Devices

(Thomas D. Callinan Award of the Dielectric Science and Technology Division)

<table>
<thead>
<tr>
<th>Ge-Source TFETs for Ultra-Low-Power Electronics</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. K. Liu, S. Kim, and Z. Jacobson</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polarity Behavior and Adjustment in Silicon Nanowire Schottky Junction Transistors</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. M. Weber, A. Heinzig, and T. Mikolajick</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metal-Molecule-Silicon Junctions Produced by Flip Chip Lamination of Dithiols: Effect of Molecular Length and Backbone</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Walsh, M. Coll, C. Richter, and C. Hacker</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flexible Memristors Fabricated through Sol-Gel Hydrolysis</th>
<th>111</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modeling and Simulation of High-κ Gate GaSb Nanowire Field Effect Transistor for Ultra High Speed and Low Power Applications</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Jahangir, S. Jahangir, and Q. D. Khosru</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bipolar Resistive Switching Characteristics of Gd₂O₃ Thin Film Structure</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Chang, W. Tzeng, K. Liu, Y. Chan, and C. Kuo</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3 Graphene Material Preparation, Synthesis and Characterization

<table>
<thead>
<tr>
<th>Observation of the Graphene Surface Structure at the Early Stages of Graphene Growth on Copper</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Celebi, A. O. Altun, K. B. Teo, and H. Park</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nano-Scale Strain-Induced Giant Pseudo-Magnetic Fields and Charging Effects in CVD-Grown Graphene on Copper</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Yeh, M. L. Teague, R. T. Wu, S. Yeom, B. Standley, D. Boyd, and M. W. Bockrath</td>
<td></td>
</tr>
</tbody>
</table>
Spectroscopic Ellipsometry of CVD Graphene
 F. Nelson, V. Kamineni, T. Zhang, E. Comfort, J. Lee, and A. Diebold

An Investigation of the Geometrical Effects on the Thermal Conductivity of Graphene Antidot Lattices
 H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina

Thermal Properties of Graphene: Applications in Thermal Interface Materials
 K. M. Shahil, V. Goyal, and A. Balandin

Molecular-Scale Tailoring of Graphene Surface Chemistry via Organic Functionalization
 Q. H. Wang, M. Hossain, M. A. Walsh, and M. C. Hersam

"Graphene-Like" Exfoliation and Characterization of the Atomically-Thin Films of Titanium Ditelluride
 J. M. Khan, D. Teweldebrhan, C. Nolen, and A. Balandin

Measuring Graphene Piezoresistance via In-Situ Nanoindentation
 M. Huang and J. R. Greer

Chapter 4:
Graphene and CNT Field-Effect Transistors and Electronics

Large-Area Synthesis of Graphene by Chemical Vapor Deposition and Transfer-Free Fabrication of Field-Effect Transistors
 S. Sato, K. Yagi, D. Kondo, K. Hayashi, A. Yamada, N. Harada, and N. Yokoyama

Transport Properties of Graphene Transistors
 E. Vogel, A. Venugopal, and L. Colombo

Approaching Terahertz Graphene Transistors
 X. Duan

Simulation of Carbon Heterostructures as Barrier Free Tunneling Transistors
 Y. Yoon and S. Salahuddin

Carbon-Based Nanomaterial for Nanoelectronics
 X. Chen, A. Lin, L. Wei, N. Patil, H. Wei, H. Chen, S. Mitra, and H. Wong

Klein Tunneling in Graphene p-n-p Junctions
 E. Rossi, J. H. Bardarson, and P. W. Brouwer
Chapter 5
III-V High Mobility Channel FETs: Fabrication and Characterization

Prospective and Critical Issues of III-V/Ge CMOS on Si Platform
S. Takagi and M. Takenaka 279

Heterogeneous Integration and Fabrication of III-V MOS Devices in a 200mm Processing Environment

Multi-Gate Modulation Doped In0.7Ga0.3 As Quantum Well FET for Ultra Low Power Digital Logic
L. Liu, V. Saripalli, E. Hwang, V. Narayanan, and S. Datta 311

Characterization Scheme for III-V Junction Development
P. Hung, C. McDonough, R. Geer, R. J. Hill, C. Deeb, K. Rader, and R. Jammy 319

Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Device with TiOxNy High-k Gate Dielectrics
T. Das, C. Mahata, G. Sutraddhar, P. Bose, and C. Maiti 325

Chapter 6
III-V High Mobility Channel FETs: Device Optimization

CMOS Scaling with III-V Channels for Improved Performance and Low Power

III-V/Si Electronics
E. A. Fitzgerald, L. Yang, and C. Cheng 345

III-V MOSFETs: Surface Passivation, Source/Drain and Channel Strain Engineering, Self-Aligned Contact Metallization
Y. Yeo, H. Chin, X. Gong, H. Guo, and X. Zhang 351
Chapter 7

Gate Dielectric and III-V MOSFET: Interface and Performance

Electron Scattering in Buried InGaAs/High-k MOS Channels
S. Oktyabrsky, D. Veksler, P. Nagaiah, T. Chidambaram, V. Tokranov, M. Yakimov, R. Kambhampati, Y. Chen, G. Bersuker, N. Goel, and C. Hobbs

Study of La2O3/HfO2 Gate Dielectric for n-InAs Metal-Oxide-Semiconductor Capacitor

High-k Oxide Growth on III-V Surfaces: Chemical Bonding and MOSFET Performance

Capacitance-Voltage and Interface State Density Characteristics of GaAs and In0.53Ga0.47As MOS Capacitors Incorporating a PECVD Si3N4 Dielectric
E. O'Connor, V. Djara, S. Monaghan, P. Hurley, and K. Cherkaoui

Atomic Layer Deposition of Al-Doped ZrO2 Thin Films for Advanced Gate Stack on III-V Substrates
L. Lamagna, A. Molle, C. Wiemer, S. Spiga, C. Grazianetti, and M. Fanciulli

Chapter 8

Ge and SiGe High Mobility FETs: Fabrication and Characterization

Recent Progress of Ge Technology for a Post-Si CMOS
A. Toriumi, C. Lee, T. Nishimura, S. Wang, K. Kita, and K. Nagashio
Junctionless Ge MOSFETs Fabricated on 10 nm-Thick GeOl Substrate
 D. Zhao, T. Nishimura, C. Lee, R. Ifuku, K. Nagashio, K. Kita, and A. Toriumi

Interface and Border Traps in Ge-Based Gate Stacks
 L. Nyns, D. Lin, G. Brammertz, F. Bellenger, X. Shi, S. Sioncke, S. Van Elshocht, and M. Caymax

Detection of the Tetragonal and Monoclinic Phases and their Role on the Dielectric Constant of Atomic Layer Deposited La-Doped ZrO2 Thin Films on Ge (001)
 C. Wiemer, A. Lamperti, L. Lamagna, O. Salicio, A. Molle, and M. Fanciulli

Chapter 9
Ge Based Devices: Device Optimization for Gate Dielectrics and Contacts

Si1-xGex-Channel PFETs: Scalability, Layout Considerations and Compatibility with Other Stress Techniques

Bulk and Interface Engineering of GeO2/Ge for High-κ/Germanium Gate Stack
 Y. Oniki, Y. Iwazaki, and T. Ueno

Electrical Properties of SiGe MOS Capacitors with Ultrathin ALD Hafnium Dioxide
 S. Mallik, C. Mahata, M. Hota, G. Dalapati, H. Gao, M. Kumar, D. Chi, C. Sarkar, and C. Maiti

Characterization of Nickel Germanide Schottky Contacts for the Fabrication of Germanium p-channel MOSFETs

Author Index
Facts about ECS

The Electrochemical Society (ECS) is an international, nonprofit, scientific, educational organization founded for the advancement of the theory and practice of electrochemistry, electrothermics, electronics, and allied subjects. The Society was founded in Philadelphia in 1902 and incorporated in 1930. There are currently over 7,000 scientists and engineers from more than 70 countries who hold individual membership; the Society is also supported by more than 100 corporations through Corporate Memberships.

The technical activities of the Society are carried on by Divisions. Sections of the Society have been organized in a number of cities and regions. Major international meetings of the Society are held in the spring and fall of each year. At these meetings, the Divisions and Groups hold general sessions and sponsor symposia on specialized subjects.

The Society has an active publications program that includes the following.

Journal of The Electrochemical Society — JES is the peer-reviewed leader in the field of electrochemical and solid-state science and technology. Articles are posted online as soon as they become available for publication. This archival journal is also available in a paper edition, published monthly following electronic publication.

Electrochemical and Solid-State Letters — ESL is the first and only rapid-publication electronic journal covering the same technical areas as JES. Articles are posted online as soon as they become available for publication. This peer-reviewed, archival journal is also available in a paper edition, published monthly following electronic publication. It is a joint publication of ECS and the IEEE Electron Devices Society.

Interface — Interface is ECS’s quarterly news magazine. It provides a forum for the lively exchange of ideas and news among members of ECS and the international scientific community at large. Published online (with free access to all) and in paper, issues highlight special features on the state of electrochemical and solid-state science and technology. The paper edition is automatically sent to all ECS members.

Meeting Abstracts (formerly Extended Abstracts) — Abstracts of the technical papers presented at the spring and fall meetings of the Society are published on CD-ROM.

ECS Transactions — This online database provides access to full-text articles presented at ECS and ECS-sponsored meetings. Content is available through individual articles, or as collections of articles representing entire symposia.

Monograph Volumes — The Society sponsors the publication of hardbound monograph volumes, which provide authoritative accounts of specific topics in electrochemistry, solid-state science, and related disciplines.

For more information on these and other Society activities, visit the ECS website:

www.electrochem.org